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Using Data

= Uncertain variables

= subjective judgment / intuition
= they follow a distribution
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Using Data

= Uncertain variables

= subjective judgment / intuition
= they follow a distribution

= how can we estimate the distribution (beside intuition)?

= using historical data

= discrete distributions: histograms
= continuous distribution: parametrization
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[excel example: goals.xIsx]

I
o
3
o

= you are deciding how to bet or not on a football match Ly

= you have historical data on how many goals were scored

= home team
= away team

= you want to have distributions of home goals and away
goals
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Home  Away Home  Away
2 1 min 0 0

1 1 max 7 6

6 2 mean 1,66 1,28
1 1 stdev 1,41 1,22
6 4 median 1 1

1 1

0 3

2 1

0 1

2 4

0 0

2 2

1 0

0 0
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Goals

Home Away ﬁz
Bin  Count p Count p -
0 87 0,23 107 0,28 %
1 107 028 150 039 . I I
2 94 0,25 66 0,17 » I| [ | I
3 54 0,14 33 0,09 oot s e
4 22 0,06 18 0,05
5 11 0,03 3 0,01
6 3 001 3 0,01
7 2 001 0 0,00
sum 380 380
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Fitting Distributions - parametrization

= fitting distributions means finding a mathematical function that approximates well
the data
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Fitting Distributions - parametrization

= fitting distributions means finding a mathematical function that approximates well
the data

= we have data (measurements) as input: x
= we want to find a probability function f(x, )

= @ is the vector of parameters

Marko Tkaléi¢, DSS-201718-05-ModelingUncertainty-2 7/34



Fitting Distributions - parametrization

= fitting distributions means finding a mathematical function that approximates well
the data

= we have data (measurements) as input: x
= we want to find a probability function f(x, )

= @ is the vector of parameters

= example

= we have measurements in the vector x
= we want to know if it is normally distributed and what are the parameters 6

= 01 = p (mean)
= 0y = o (standard deviation)

= the probability density function (PDF) we are looking for:

1 _ (=)

f(x,p0) = ?
V2ro
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Fitting with Spreadsheet Software

[excel example: goals.xlsx]

= use built-in functions for generating distribution data

= norm.dist()
= poisson.dist()
= binom.dist()

= calculate error (difference)
= play with parameters to minimize error

Real vs Fitted Poisson

Data Fitted Abs(Error) 0,35
Bin  Count p P o3
0 87 0,23 0,21 0,02 0.2
1 107 0,28 0,33 0,05 02
2 94 0,25 0,25 0,01 015
3 54 0,14 0,13 0,01 o1
4 22 0,06 0,05 0,01 0,05 II
5 11 0,03 0,02 0,01 o B -
6 3 0,01 0,00 0,00 0 1 2 3 4 s 6 7
7 2 0,01 0,00 0,00 mData M Fitted Poisson
sum 380 0,11
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Fitting Distributions in R

= fitting distributions usually involves 4 steps:

= hypothesize a family of distributions

= estimate parameters

= evaluate the quality of fit

= goodness-of-fit statistical test (have we chosen the right distribution?)
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Fitting Distributions in R

= fitting distributions usually involves 4 steps:

= hypothesize a family of distributions

= estimate parameters

= evaluate the quality of fit

= goodness-of-fit statistical test (have we chosen the right distribution?)

= we will use the open-source statistical program R

= install R
= install R Studio (the IDE)

= R is a free software environment for statistical computing and graphics.
= reference card: https://cran.r-project.org/doc/contrib/Short-refcard.pdf
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To Install R

= Open an internet browser and go to www.r-project.org.
= Click the “download R” link in the middle of the page under “Getting Started.”
= Select a CRAN location (a mirror site) and click the corresponding link.
= Click on the
= [MAC] “Download R for (Mac) OS X" link at the top of the page.
= [Windows] “Download R for Windows" link at the top of the page.
= Click on the file containing the latest version of R under “Files.”
= Do:
= [MAC] Save the .pkg file, double-click it to open, and follow the installation instructions.
= [Windows] Click “Download R for Windows” and save the executable file somewhere on
your computer. Run the .exe file and follow the installation instructions.

To Install RStudio

= Go to www.rstudio.com and click on the “Download RStudio” button.
= Click on “Download RStudio Desktop.”
= Click on the version recommended for your system, or
= [MAC] the latest Mac version, save the .dmg file on your computer, double-click it to
open, and then drag and drop it to your applications folder.
= [Windows] the latest Windows version, and save the executable file. Run the .exe file and

follow the installation instructions
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= run R Studio
= create new R script: File.New File.R Script
= if an R package is missing, install it

install.packages('fitdistrplus')

= run the script line-by-line
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Fitting with R

= we will be using the fitdistrplus package

install.packages('fitdistrplus') |

= the main function for fitting is fitdist()

= https://www.rdocumentation.org/packages/fitdistrplus/versions/1.0-8 /topics/fitdist
= https://www.r-project.org/conferences/useR-2009 /slides/Delignette-
Muller+Pouillot+Denis.pdf
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Fitting with R - step-by-step

library('xlsx"')
library('fitdistrplus')
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Fitting with R - step-by-step

library('xlsx"')
library('fitdistrplus')

setwd('/Users/markot/work/teaching/2017-18_AAU_DecisionSupportSystems/LectureNotes/@5_ModelingUncertainty-2/code')
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Fitting with R - step-by-step

library('xlsx"')
library('fitdistrplus')

setwd('/Users/markot/work/teaching/2017-18_AAU_DecisionSupportSystems/LectureNotes/@5_ModelingUncertainty-2/code')

raw_data <- read.xlsx('all-euro-data-2016-2017.x1s', sheetIndex = 1)
x <- raw_data$FTHG

hist(x)
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Fitting with R - step-by-step

library('xlsx"')
library('fitdistrplus')

setwd('/Users/markot/work/teaching/2017-18_AAU_DecisionSupportSystems/LectureNotes/@5_ModelingUncertainty-2/code')

raw_data <- read.xlsx('all-euro-data-2016-2017.x1s', sheetIndex = 1)
x <- raw_data$FTHG

hist(x)

descdist(x, discrete = FALSE)
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Cullen Frey Graph

= Kurtosis is a measure of whether the data are heavy-tailed or light-tailed relative to
a normal distribution.

= high kurtosis = data has heavy tails (outliers)
= low kurtosis = data has light tails
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Cullen Frey Graph

= Skewness is a measure of the asymmetry of the distribution

L J
L

Negative Skew Positive Skew
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Cullen Frey Graph

Cullen and Frey graph
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Fitting with R - step-by-step

library('xlsx')
library('fitdistrplus')

setwd (' /Users/markot/work/teaching/2017-18_AAU_DecisionSupportSystems/LectureNotes/@5_ModelingUncertainty-2/code’)

raw_data <- read.xlsx('all-euro-data-2016-2017.x1s', sheetIndex = 1)
x <- raw_data$FTHG

hist(x)

descdist(x, discrete = FALSE)

fit.nbinom <- fitdist(x, "nbinom”, method = 'mme')
summary (fit.nbinom)
plot(fit.nbinom)
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Summary and Plot of Negative Binomial Fit

Fitting of the distribution
Parameters :

nbinom ' by matching moments

estimate
size 24.001629
mu 1.597368
Loglikelihood: -608.0674 AIC: 1220.135 BIC: 1228.015

Emp. and theo. distr. Emp. and theo. CDFs
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Fitting with R - step-by-step

library('xlsx"')
library('fitdistrplus')

setwd('/Users/markot/work/teaching/2017-18_AAU_DecisionSupportSystems/LectureNotes/@5_ModelingUncertainty-2/code')

raw_data <- read.xlsx('all-euro-data-2016-2017.x1s', sheetIndex = 1)
x <- raw_data$FTHG

hist(x)

descdist(x, discrete = FALSE)

fit.nbinom <- fitdist(x, "nbinom”, method = 'mme')
summary (fit.nbinom)
plot(fit.nbinom)

fit.beta <- fitdist(x/max(x), "beta”, method = 'mme')
summary (fit.beta)
plot(fit.beta)

fit.pois <- fitdist(x, "pois”, method = 'mme')

summary (fit.pois)
plot(fit.pois)

cdfcomp(list(fit.pois, fit.nbinom), legendtext = c("poisson”,"negative binomial”))
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Comparison of fits - cdfcomp()

Empirical and theoretical CDFs
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Finding Historical Data

= there are several resources for finding historical data
= data science repositories/competitions

= Kaggle
= KDD Cups

= financial data sources
= social media crawling
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Finding Historical Data

= there are several resources for finding historical data
= data science repositories/competitions

= Kaggle
= KDD Cups

= financial data sources
= social media crawling

= Some repositories:

= http://www.dataonthemind.org/data-resources/datasets
= https://data.europa.eu/euodp/data/
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Monte Carlo Simulation

= often, many factors are subject to uncertainty
= if there are too many, the decision tree becomes a bushy mess

Growth  Market Fixed
Rate Share Costs

Return
Net
Return
B
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Monte Carlo Simulation

= often, many factors are subject to uncertainty
= if there are too many, the decision tree becomes a bushy mess

Growth
Rate

Growth  Market Fixed
Rate Share Costs

Net
Return

= an alternative is to use simulations
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Monte Carlo Simulation

= Monte Carlo Simulations (or Monte Carlo experiments) are a broad class of
computational algorithms that rely on repeated random sampling to obtain
numerical results.

= Their essential idea is using randomness to solve problems that might be
deterministic in principle.

= they are based on the Law of Large Numbers:

= the average of the results obtained from a large number of trials should be close to the
expected value, and will tend to become closer as more trials are performed.
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Procedure

Monte Carlo methods vary, but tend to follow this pattern:
1. Define a domain of possible inputs

= define the variables
= assess their distribution
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1. Define a domain of possible inputs

= define the variables
= assess their distribution

2. Generate inputs randomly from a probability distribution over the domain
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Procedure

Monte Carlo methods vary, but tend to follow this pattern:

1. Define a domain of possible inputs

= define the variables
= assess their distribution

2. Generate inputs randomly from a probability distribution over the domain

3. Perform a deterministic computation on the inputs
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Procedure

Monte Carlo methods vary, but tend to follow this pattern:

1. Define a domain of possible inputs

= define the variables
= assess their distribution

2. Generate inputs randomly from a probability distribution over the domain
3. Perform a deterministic computation on the inputs

4. Aggregate the results
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Soft Pretzel Example

Soft Pretzels Having just completed your degree in business, you are eager to try your
skills as an entrepreneur by marketing a new pretzel that you have developed. You
estimate that you should be able to sell them at a competitive price of 50 cents each.
The potential market is estimated to be 100,000 pretzels per year. Unfortunately,
because of a competing product, you know you will not be able to sell that many. After
careful research and thought, you conclude that the following model of the situation
captures the relevant aspects of the problem: Your new pretzel might be a hit, in which
case it will capture 30% of the market in the first year. On the other hand, it may be a
flop, in which case the market share will be only 10%. You judge these outcomes to be
equally likely. Being naturally cautious, you decide that it is worthwhile to bake a few
pretzels and test market them. You bake 20, and in a taste test against the competing
product, 5 out of 20 people preferred your pretzel. Given these new data, what do you
think the chances are that your new pretzel is a hit? The following analysis is one way
that you might analyze the situation.
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nte Carlo with Spreadsheet Software

1. Define a domain of possible inputs
= market size estimation : normal M=100000 SD=10000
= market share estimation: discrete distribution
= 16%: p =0.15
= 19%: p = 0.35
= 25%: p=0.35
= 28%: p=0.15
= price: 0,50 EUR
= variable cost per pretzel: uniform distribution 0,08 - 0,12 EUR
= fixed costs: normal M=8000 EUR, SD=500 EUR
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nte Carlo with Spreadsheet Software

1. Define a domain of possible inputs
= market size estimation : normal M=100000 SD=10000
= market share estimation: discrete distribution
= 16%: p =0.15
= 19%: p = 0.35
= 25%: p=0.35
= 28%: p=0.15
= price: 0,50 EUR
= variable cost per pretzel: uniform distribution 0,08 - 0,12 EUR
= fixed costs: normal M=8000 EUR, SD=500 EUR

2. Generate inputs randomly from a probability distribution over the domain
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nte Carlo with Spreadsheet Software

1. Define a domain of possible inputs

= market size estimation : normal M=100000 SD=10000
= market share estimation: discrete distribution

= 16%: p=10.15
= 19%: p=10.35
= 25%: p=0.35
= 28%: p=0.15

= price: 0,50 EUR
= variable cost per pretzel: uniform distribution 0,08 - 0,12 EUR
= fixed costs: normal M=8000 EUR, SD=500 EUR

2. Generate inputs randomly from a probability distribution over the domain

3. Perform a deterministic computation on the inputs

= net return:

netreturn = (size - share) - (price — variablecost) — fixedcost
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nte Carlo with Spreadsheet Software

1. Define a domain of possible inputs

= market size estimation : normal M=100000 SD=10000
= market share estimation: discrete distribution

= 16%: p=10.15
= 19%: p=10.35
= 25%: p=0.35
= 28%: p=0.15

= price: 0,50 EUR
= variable cost per pretzel: uniform distribution 0,08 - 0,12 EUR
= fixed costs: normal M=8000 EUR, SD=500 EUR

2. Generate inputs randomly from a probability distribution over the domain

3. Perform a deterministic computation on the inputs

= net return:

netreturn = (size - share) - (price — variablecost) — fixedcost

4. Aggregate the results
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Monte Carlo with Spreadsheet Software

[excel example: MonteCarlo.xIsx]

2. Generate inputs randomly from a probability distribution over the domain

= Market Proportion =VLOOKUP(RAND();$A$10:$B$13;2)
« Market Size =NORM.INV(RAND();$C$5:5C$6)

= Variable Cost =$D$7+RAND()*($D$8-$D$7)

= fixed cost =NORM.INV(RAND();$E$5;$E$6)
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Monte Carlo with Spreadsheet Software

4. Aggregate the results

. Cumulative Risk Profile
Histogram
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= shows the uncertainty of the payoffs
= 40/100 cases with negative net profit

= visual comparison of histograms of two risky projects is better than the comparison
of estimated values
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nte Carlo Simulations with other software

= doing MonteCarlo simulations with spreadsheets by hand:
= intuitive, under control
= limited

= other software has dedicated libraries

= R: http://www.stat.ufl.edu/archived/casella/ShortCourse/MCMC-UseR.pdf
= Excel add-ons: @RISK
= other: Fluka, Grant4, MCNP
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