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Other Data-driven Approaches

= we used data to fit the distributions of the unknown variables
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Other Data-driven Approaches

= we used data to fit the distributions of the unknown variables

= machine learning techniques are useful for making predictions
= supervised:

= regression (continuous)
= classification (discrete)

= unsupervised

= clustering
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Clustering

= grouping objects together into clusters (groups)

= object in the same cluster should be more similar than objects outside of the
cluster

= similarity is key and requires contextual knowledge
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Clustering

= grouping objects together into clusters (groups)

= object in the same cluster should be more similar than objects outside of the
cluster

= similarity is key and requires contextual knowledge

= there are several algorithms to achieve this task

= k-means
= hierarchical models
= distribution-based models (GMM)
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= iris.arff (https://archive.ics.uci.edu/ml/datasets/iris)
= 3 classes of 50 instances each, where each class refers to a type of iris plant.

= One class is linearly separable from the other 2; the latter are NOT linearly
separable from each other.

Marko Tkaléi¢, DSS-201718-08-DataMining-Clustering 6/26



= iris.arff (https://archive.ics.uci.edu/ml/datasets/iris)
= 3 classes of 50 instances each, where each class refers to a type of iris plant.

= One class is linearly separable from the other 2; the latter are NOT linearly
separable from each other.

Attribute Information:

. sepal length in cm
. sepal width in cm
. petal length in cm

. petal width in cm

[]
o A W N =

. class:

= |ris Setosa
= |ris Versicolour
= Iris Virginica
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= Weka is a collection of machine learning algorithms for data mining tasks.
= it has an easy GUI

= does not require knowledge of ML

= download Weka from https://www.cs.waikato.ac.nz/ml/weka/

= install
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Running Weka

= Weka is a collection of machine learning algorithms for data mining tasks.
= it has an easy GUI

= does not require knowledge of ML

= download Weka from https://www.cs.waikato.ac.nz/ml/weka/

= install

= run and click Explorer

i e [ J Weka GUI Chooser |
Program Visualization Tools Help
Applications
'WEKA Explore
The University

of Waikato Experimenter

= Knowled geFlow
Waikato Environment for Knowledge Analysis S ——
Version 3.8.0 Workbench
{c) 1999 - 2016

The University of Waikato Simple CLI

Hamilton, New Zealand
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Explorer

= open file
= choose iris.arff

e0ce Weka Explorer

Preprocess Cluste e | selec ute alize

[ Open file... J { Open URL... J { Open DB... J { Generate... | unc
Filter

Choose |None

Current relation

_ Selected attribute

Type: None
Unique: None

v|| visualize All |

Relation: None Auributes: None Name: None
Instances: None Sum of weights: None Missing: None Distinct: None
Attributes
) :
Remove
Status

Welcome to the Weka Explorer
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Pre-process

= you can observe the histogram of the variables
= click on Cluster

o0 e Weka Explorer

Preprocess | Classify | Cluster | Associate | Select attributes | Visualize |
| Openfie.. || OpenURL.. || OpenDB.. || Generate.. | Undc Edit... Save...

Filter
Choose | None Apply
Current relation Selected attribute
Relation: iris Attributes: 5 Name: sepallength Type: Numeric
Instances: 150 Sum of weights: 150 Missing: 0 (0%) Distinct: 35 Unique: 9 (6%)
Attributes Statistic | Value |
1| Minimum 43
Maximum 7.9
| Al J| None || nvert || Patern | Mean 5.843
StdDev 0.828
1
2 .
= Class: class (Nom) v || visualize Al
3 [] petallength ‘ { “
4 [ petalwidth
5 (] class 34
ELl 28
25
1c
10 .
Rem
43 61 73

Status
ox o | x0
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Cluster

e0e Weka Explorer
[ Preprocess | Classify [ Cluster | Associate | Select auributes | visualize |
Clusterer

Choose [EM -1 100 -N -1 -X 10 -max -1 -ll-cv 1.0E-6 -Il-iter 1.0E-6 -M 1.0E-6 -K 10 -num-slots 1 -5 100

Cluster mode _ Clusterer output

@ Use training set
O supplied test set
O Percentage spiit 66
O Classes to clusters evaluation
(Nom) class

() store clusters for visualization

L Ignore attributes ]

start
Result list (right-click for options)

Status

o Lo | n0

Choose clustering algorithm (click choose -> k-means)

Choose number of clusters (click on the long list of parameters)

Remove attributes for clustering (click on Ignore attributes)

Start

Visualize cluster assignments (right-click on the chosen result in the resultlist and
click Visualize cluster assignments)

ahoon =
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Algorithm

Weka Explorer

[ Preprocess T Classify I Cluster T Associate 1 Select attributes T Visualize 1

Clusterer
v E‘weka s 100 -periodic-pruning 10000 -min-density 2.0 -t1 -1.25 -12 -1.0 -N 3 —A‘
v (& clusterers
<l [ canopy Clusterer output
[ cobweb =
D EM Attribute Full Data 0 ||
(150.0) (50.0) r
[ FarthestFirst
[ FilteredClusterer sepallength 5.8433 5.936
T sepalwidth 3.054 2.717
\_L/ HierarchicalClusterer petallength 3.7587 .26
D MakeDensityBasedClusterer petalwidth 1.1987 1.326
impleKMeans class Iris-setosa Iris-versicolor Iris4
B Time taken to build model (full training data) : .01 second
N
L === Model and evaluation on training set ===
R¢
rl Clustered Instances
] 50 ( 33%)
1 50 ( 33%)
2 50 ( 33%)
&
Close L]
(_Close | < /
Status
oK
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Parameters

= set number of clusters to three

ece weka.gui GenericObjectEditor
weka.clusterers.SimplekMeans
About i
-~
Cluster data using the k means algorithm. More
Capabilities
canopyMaxNumCanopiesToHoldinMemory | 100
canopyMinimumCanopyDensity | 2.0
canopyPeriodicPruningRate | 10000
canopyTl -1.25
canopyT2  -1.0
debug [False ~
| False I

distanceFunction

doNotCheckCapabilities

Choose | EuclideanDistance -R fir
False v

| False v

| False

| Random |

maxiterations 500
numClusters 3 |8
v
FIS CAL
Open... Save... OK Cancel
L )
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Remove variables for clustering

' @ Selectitems

sepallength
sepalwidth
petallength
petalwidth
class

select ] [ Pattern J [ Cancel
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Visualize

e0e@ Weka Clusterer Visualize: 08:16:19 - SimpleKMeans (iris)
[x: (Num) 17 - petatwidth (vum) 5]

| Colour: Cluster (Nom) v/ | select instance

Rese | cear J| open || save | Jitter o

Plot: iris_clustered

T

<

Class colour

clusterd clusterl
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Business Decision

The management team of a large shopping mall would like to understand the types of
people who are, or could be, visiting their mall. They have good reasons to believe that
there are a few different market segments, and they are considering designing and

positioning the shopping mall services better in order to attract mainly a few profitable

market segments, or to differentiate their services (e.g. invitations to events, discounts,
etc) across market segments.
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Data acquisition

= gather data
= market survey with potential customers

Name Description Scale
V1 Shopping is fun 1-7

V2 Shopping is bad for your budget 1-7

V3 | combine shopping with eating out 1-7

V4 | try to get the best buys while shopping 1-7

V5 | don't care about shopping 1-7
V6 You can save lot of money by comparing prices  1-7
Income The household income of the respondent Dollars
Mall.Visits ~ How often they visit the mall 1-7
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Steps in clustering

We will take the following steps

= Select Segmentation Variables

= Define similarity measure

= Method and Number of Segments
= Profile and interpret the segments
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Select Segmentation Variables

= critically important decision
= exploratory research usually helps

= visualization of distributions
= contextual knowledge, creativity, and experimentation/iterations are needed.

= clustering - we use only few variables (V1..V6)
= profiling - we use the remaining ones (income, numOfVisits)
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Define similarity measure

= clustering = grouping objects based on how similar they are
= similarities:

= Euclidian

= Manhattan

= Cosine
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Euclidian distance

= distance between two objects p and g, each with N variables

p = (p1,p2---pn); d = (a1, G2, ---Gn)
d(p,a) = /(p1 — @12 + (P2 — )2 + ... + (pn — qn)?

= for first 10 subjects
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Method and Number of Segments

= choosing the clustering method and number of clusters:

= statistical reasoning,

= judgment,

= interpretability of the clusters,

= actionable value of the clusters found,

= |n practice different algorithms and numbers of segments should be explored, and
the final choice should be made based on both statistical and qualitative criteria.
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Method and Number of Segments

= choosing the clustering method and number of clusters:

= statistical reasoning,

= judgment,

= interpretability of the clusters,

= actionable value of the clusters found,

= |n practice different algorithms and numbers of segments should be explored, and
the final choice should be made based on both statistical and qualitative criteria.

= method:

= kMeans
= hierarchical

= number of clusters

= 3
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Profile and interpret the segments

= interpretation of the characteristics of the clusters

Population  Cluster 1~ Cluster 2 Cluster 3
V1 3.85 5.75 1.67 3.50
V2 4.10 3.62 3.00 5.83
V3 3.95 6.00 1.83 3.33
V4 4.10 3.12 3.50 6.00
V5 3.45 1.88 5.50 3.50
V6 4.35 3.88 3.33 6.00
Income 46000.00 60000.00 42500.00 30833.33
Mall.Visits ~ 3.25 3.25 1.00 5.50
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Our example in Weka

= File open: mall.csv
= repeat steps from the iris example
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