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Other Data-driven Approaches

• we used data to fit the distributions of the unknown variables

• machine learning techniques are useful for making predictions
• supervised:

• regression (continuous)
• classification (discrete)

• unsupervised
• clustering
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Clustering

• grouping objects together into clusters (groups)
• object in the same cluster should be more similar than objects outside of the

cluster
• similarity is key and requires contextual knowledge

• there are several algorithms to achieve this task
• k-means
• hierarchical models
• distribution-based models (GMM)
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Iris

• iris.arff (https://archive.ics.uci.edu/ml/datasets/iris)

• 3 classes of 50 instances each, where each class refers to a type of iris plant.

• One class is linearly separable from the other 2; the latter are NOT linearly
separable from each other.

Attribute Information:

• 1. sepal length in cm

• 2. sepal width in cm

• 3. petal length in cm

• 4. petal width in cm

• 5. class:

• Iris Setosa
• Iris Versicolour
• Iris Virginica
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Running Weka

• Weka is a collection of machine learning algorithms for data mining tasks.
• it has an easy GUI
• does not require knowledge of ML
• download Weka from https://www.cs.waikato.ac.nz/ml/weka/
• install

• run and click Explorer
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Explorer

• open file
• choose iris.arff
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Pre-process

• you can observe the histogram of the variables
• click on Cluster
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Cluster

1. Choose clustering algorithm (click choose -> k-means)
2. Choose number of clusters (click on the long list of parameters)
3. Remove attributes for clustering (click on Ignore attributes)
4. Start
5. Visualize cluster assignments (right-click on the chosen result in the resultlist and

click Visualize cluster assignments)
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Algorithm
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Parameters

• set number of clusters to three
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Remove variables for clustering
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Visualize

Marko Tkalčič, DSS-201718-08-DataMining-Clustering 14/26



Table of Contents

Clustering

Clustering with Weka

Clustering for decision making

Marko Tkalčič, DSS-201718-08-DataMining-Clustering 15/26



Business Decision

The management team of a large shopping mall would like to understand the types of
people who are, or could be, visiting their mall. They have good reasons to believe that
there are a few different market segments, and they are considering designing and
positioning the shopping mall services better in order to attract mainly a few profitable
market segments, or to differentiate their services (e.g. invitations to events, discounts,
etc) across market segments.
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Data acquisition

• gather data
• market survey with potential customers

Name Description Scale

V1 Shopping is fun 1-7
V2 Shopping is bad for your budget 1-7
V3 I combine shopping with eating out 1-7
V4 I try to get the best buys while shopping 1-7
V5 I don’t care about shopping 1-7
V6 You can save lot of money by comparing prices 1-7
Income The household income of the respondent Dollars
Mall.Visits How often they visit the mall 1-7
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Data

ID V1 V2 V3 V4 V5 V6 Income Mall.Visits

1 6 4 7 3 2 3 60000 3
2 2 3 1 4 5 4 30000 1
3 7 2 6 4 1 3 70000 3
4 4 6 4 5 3 6 30000 7
5 1 3 2 2 6 4 60000 1
6 6 4 6 3 3 4 50000 2
7 5 3 6 3 3 4 65000 3
8 7 3 7 4 1 4 55000 4
9 2 4 3 3 6 3 70000 0
10 3 5 3 6 4 6 25000 6
. . . . . . . . . . . . . . . . . . . . . . . . . . .
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Steps in clustering

We will take the following steps

• Select Segmentation Variables
• Define similarity measure
• Method and Number of Segments
• Profile and interpret the segments
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Select Segmentation Variables

• critically important decision
• exploratory research usually helps

• visualization of distributions
• contextual knowledge, creativity, and experimentation/iterations are needed.

• clustering - we use only few variables (V1..V6)
• profiling - we use the remaining ones (income, numOfVisits)
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Define similarity measure

• clustering = grouping objects based on how similar they are
• similarities:

• Euclidian
• Manhattan
• Cosine
• . . .
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Euclidian distance

• distance between two objects p and q, each with N variables

p = (p1, p2...pN); q = (q1, q2, ...qN)

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 + ... + (pN − qN)2

• for first 10 subjects

1 2 3 4 5 6 7 8 9 10

1 0
2 8 0
3 3 8 0
4 6 6 7 0
5 8 3 9 7 0
6 2 7 3 4 7 0
7 2 6 3 5 6 1 0
8 2 9 2 6 9 3 3 0
9 7 3 8 6 2 6 5 8 0
10 7 4 7 2 6 6 6 7 5 0
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Method and Number of Segments

• choosing the clustering method and number of clusters:
• statistical reasoning,
• judgment,
• interpretability of the clusters,
• actionable value of the clusters found,

• In practice different algorithms and numbers of segments should be explored, and
the final choice should be made based on both statistical and qualitative criteria.

• method:
• kMeans
• hierarchical

• number of clusters
• 3
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Profile and interpret the segments

• interpretation of the characteristics of the clusters

Population Cluster 1 Cluster 2 Cluster 3

V1 3.85 5.75 1.67 3.50
V2 4.10 3.62 3.00 5.83
V3 3.95 6.00 1.83 3.33
V4 4.10 3.12 3.50 6.00
V5 3.45 1.88 5.50 3.50
V6 4.35 3.88 3.33 6.00
Income 46000.00 60000.00 42500.00 30833.33
Mall.Visits 3.25 3.25 1.00 5.50
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Our example in Weka

• File open: mall.csv
• repeat steps from the iris example
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